
International Journal of Management, IT & Engineering
Vol. 9 Issue 6, June 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International

Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in

Cabell’s Directories of Publishing Opportunities, U.S.A

440 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

XHTMLtransformation to JSF ComponentTree

Vijay Kumar Pandey

Abstract: -
Java Server Faces (JSF) is a component-oriented framework to manage html-basedrequest and response. The

current version of JSF 2.3 included as part of Java Enterprise Edition (JEE 8) has the default view technology

of Facelet. Facelet is the java object representation for the XHTML (Extensible HyperText Markup

Language) in the JSF context. Enterprise project teams building JSF based system typically write the view

layer code in an XHTML format. XHTML are physical files,which are processed by the JSF run time engine

to convert it into a runtime java object as Facelet and which are then transformed to component tree based on

the various tag handlers associated with the xml tags present in the xhtml file. This paperlays down the

ground work for the complex processing behind the transformation of xhtml to component tree which can

help software architects and developers to better understand this processand helping them to design and

maintain their JSF based system in an effective manner. This document assumes that the reader has a basic

understanding of JSF.

Keywords: - XHTML, JSF Component Tree, VDL (View Declaration Language), CDI (Context Dependency

Injection), Facelet, UIViewRoot, JSF Lifecycle.

Director of Technology Solutions, Intueor Consulting, Inc. Irvine CA – USA,

pandey@intueor.com

 ISSN: 2249-0558 Impact Factor: 7.119

441 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

I. INTRODUCTION

This papergoes in depth to describe the complex processing that occurs during the conversion of an

XHTML file to fill up a JSF component tree UIViewRoot. XHTML files are converted to Facelet objects and

then JSF component tree and for a http request this component tree resides in UIViewRoot.The default

Facelet implementation provided by both Oracle’s Mojarra&Apache’s MyFaces is XHTML. This paper will

lay out in detail the processing that occurs in the JSF runtime enginefor converting a physical XHTML file to

a JSF component tree. The sample code provided in this paper utilizes open source projects such as

PrimeFaces and OmniFaces. JSF Lifecycle consists of six phases, i.e., RESTORE_VIEW,

APPLY_REQUEST_VALUES, PROCESS_VALIDATIONS, UPDATE_MODEL_VALUES, INVOKE_APPLICATION, and

RENDER_RESPONSE. The transfornation of XHTML to Facelet and component tree mainy happens in the

RESTORE_VIEW and RENDER_RESPONSE phases.

RESTORE VIEW

APPLY REQUEST VALUES

PROCESS VALIDATIONS

UPDATE MODEL VALUES

INVOKE APPLICATION

RENDER RESPONSE

PROCESS EVENTS

PROCESS EVENTS

PROCESS EVENTS

PROCESS EVENTS

Faces Request

Faces Response

Java Server Faces Lifecycle

JSF View Not Available

Validation Errors

Conversion Errors

Immediate type request

Ph
ases fo

r XH
TM

L to
 Facelet an

d Co
m

pon
ent Tree Processin

g

Figure 1

 ISSN: 2249-0558 Impact Factor: 7.119

442 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

II. FACELETS CODE

The code outlined below are utilized to help the reader follow the processing of converting xhtml to

component tree:

A. pagetemplate.xhtml

This template xhtml provides a mechanism to configure common tags for header, footer, and menu objects,

for a page among others.

<?xml version="1.0" encoding="ISO-8859-1"?>
<html lang="en"
 xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

<f:view contentType="text/html" >
 <h:head>

<title>
<ui:insert name="title">Page Title</ui:insert>

</title>
 </h:head>

<ui:insert name="metadata"/>
 <h:body>

<h:panelGroup layout="block">
<ui:insert name="content" >

Page Content
</ui:insert>

</h:panelGroup>
 </h:body>
</f:view>

</html>

Figure 2

B. pagetest.xhtml

This code represents the main XHTML file which will implement a certain use case, in a real-world

application.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:p="http://primefaces.org/ui"

 xmlns:poc="http://test/ui"
 template="/WEB-INF/faces/template/templatepaper.xhtml">

 <ui:define name="title">XHTML Page Title</ui:define>
 <f:metadata>

<f:viewAction action="#{controller.viewAction}"/>
</f:metadata>
<ui:define name="content">
 <h:form >

<p:panelGrid columns="2" >
 <f:facet name="header">Paper Title</f:facet>

 <p:outputLabel value="Value" for = "value" />
 <p:inputText value="#{controller.value}" id="value" />

 <f:facet name="footer">
<p:commandButton value="Save" action="#{controller.execute}" update="@form" />

 </f:facet>
 </p:panelGrid>
 </h:form>

 </ui:define>
</ui:composition

Figure 3

C. Controller.java

 ISSN: 2249-0558 Impact Factor: 7.119

443 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Controller is a CDI annotated bean that will process the request submitted by the above defined

pagetest.xhtml. The execute method is invoked during the INVOKE_APPLICATION phase.

package article;

import java.io.Serializable;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.view.ViewScoped;
import javax.inject.Named;

@Named
@ViewScoped
public class Controller implements Serializable {

private String value;
public void viewAction(){}

public String execute(){
FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Execute processed"));
return null;

}
public String getValue() {

return value;
}
public void setValue(String value) {

this.value = value;
}

}

Figure 4

III. XHTML TO JSF COMPONENT TREE TRANSFORMATION

The lifecycle of a JSF application begins when a user makes an HTTP request for a page and ends when the

server responds with the response.The request-response JSF lifecycle handles two kinds of requests: Initial

Request and PostBack. An initial request occurs when a user makes a request for a page for the first time. A

PostBack request occurs when a user submits the form contained on a page that was previously loaded into

the browser because of executing an initial request.FacesServlet (provided by JSF implementation) manages

therequest-processing lifecycle for web applications and initializes the resources requiredby JSF

technology.Before a JSF application can start processing requests, the web container will initialize this

servlet with required resources.The prerequisite to understand the transformation of XHTML to facelet is to

understand how a request is handled by FacesServlet.

A. JSF ServletInitialization

Duringweb server start up, FacesServletwill get initialized.The init method of this servlet is used to initialize

Factory objects such as FacesContextFactory and LifeCycleFactory. The request is handled by the service

method of the FacesServlet. FacesContextis the main object that is created in this method which can then

later be accessed through ThreadLocal mechanism from controller classes. FacesContextFactory has a

getFacesContextmethod that creates (as needed) a new FacesContext object. The first argument of the

method getFacesContextis of type Object; for the servlet request environment, this is the ServletContext

object. FacesContext.getExternalContext() method returns ExternalContext, which is a wrapper around

ServletContext, ServletRequest and ServletResponse. FacesContextobject is released from the thread in the

finalclauseof the servlet’s service method.

After the creation of the FacesContext, FacesServlet delegates further processing of the request, to the

Lifecycle object. Lifecycle class has two main methodsexecute and render. The execute method processes the

first five phases of the JSF Lifecycle and the render method processes the RENDER_RESPONSE phase of the

lifecycle.

B. Lifecycle Execute

 ISSN: 2249-0558 Impact Factor: 7.119

444 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

In the Lifecycle.execute() method, the initial JSF five phases get executed – obviously, it can return after any

phase due to responseCompleted or renderResponse marked as true i.e.,facesContext.getRenderResponse() or

facesContext.getResponseComplete() returning true.

It should be noted here that if facesContext.getResponseComplete() returns true then Lifecycle.render() will

also not execute. For e.g., a request creates a scenario where the response will be a downloaded file, possibly

in the INVOKE_APPLICATION phase, in which case the stream will be written to the outputStream. After

the stream has been written,it will need to be explicitly markedfor the response as completed on the

facesContextthrough facesContext.responseComplete().

The subsequent section will address the phases where a physical XHTML file is converted to Facelets and

then to a component tree withUIViewRoot as the top-level component.

C. Restore View Phase (LifeCycle Execute Method – Initial Request Scenario)

This phase plays a key role in the process of creating a Facelet butinvolves only the Facelet object

corresponding to the metadata tag in the XHTML. The name of this phase suggests that it is supposed to

restore the view on the PostBack request, but in case of an initial request, it creates the Facelet for the

metadata tag. In the pre-phase action, the initView method on the ViewHandler is executed. This is basically

to set the character encoding on the ExternalContext.

facesContext.getApplication().getViewHandler().initView(facesContext);

At this stage, the main processing in this phase of the lifecycle starts; of course, this occurs after beforePhase

methods have executed for all PhaseListeners configured against this phase. Up until this point, no

UIViewRoot has been created i.e.,facesContext.getViewRoot() will return null. Before this root object can get

created, viewId needs to be created. In a straightforward scenario, if the initial request’s URL is something

like http(s)//<<server>>/<<context-root>>/article/pagetest.xhtml, then from the servlet api, the viewId for the

request is determined as /article/pagetest.xhtml, which is the servlet path. The code below provides the

algorithm of how a viewId is calculated for a non-portlet type of request:

String viewId = (String) externalContext.getRequestMap().

get("javax.servlet.include.path_info");

If (viewId == null)

 viewId = externalContext.getRequestPathInfo();

if (viewId == null)

 viewId = (String)externalContext.getRequestMap().

get("javax.servlet.include.servlet_path");

if (viewId == null){

 viewId = externalContext.getRequestServletPath();

Based on the viewId, VDL object is determined from the ViewHandler. VDL can be determined through

viewHandler.getViewDeclarationLanguage(facesContext, viewId). For an XHTML based Facelet, once the

VDL is determined, ViewMetaData is created via:

ViewMetadata metadata = vdl.getViewMetadata(facesContext, viewId);

The above object is a Facelet based ViewMetadatawith viewId. After the creation of the above

object,createMetadataView method is executed and returns a UIViewRoot. This is the where the actual

conversion from an XHTML file to a Facelet object occurs, but as stated earlier, this Facelet is only related

to a metadata tag in the XHTML file.

UIViewRoot viewRoot = metadata.createMetadataView(facesContext)

The above created UIViewRoot has only UIViewAction(s) and UIViewParameter(s) as children grouped

under a common parent of type facetwith name of UIViewRoot.METADATA_FACET_NAME. This facet is a

 ISSN: 2249-0558 Impact Factor: 7.119

445 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

direct child of UIViewRoot.Before the ViewMetadata, related components are created through its facelet,

UIViewRoot needs to be created first, via

UIViewRoot viewRoot = facesContext.getApplication().getViewHandler().createView(facesContext, <<viewId>>);

Main processing inside createView: This method goes through the ViewDeclarationLanguage.createView(facesContext,<<viewId>>) to create the UIViewRoot.

UIViewRoot viewRoot = (UIViewRoot) facesContext.getApplication().createComponenT.(facesContext, UIViewRoot.COMPONENT_TYPE, null);

There is no renderer associated with the UIViewRoot component, hence the third argument is null. Based on

the component type, JSFengine looks for the implementation class and creates a new instance of the

component (all components, either provided by the JSF implementation or custom component) through its

no-arg constructor.

Class<? extends UIComponent> componentClass = <<fetch the implementation class based on component type>>

UIComponent component = componentClass.newInstance();

During the component creation time, various annotations tagged on the component such as ListenerFor,

ListenersFor, ResourceDependency and ResourceDependencies, are handled.

Once the UIViewRoot gets created, then locale and renderkitIdare set on the root object through ViewHandler

class, that has methods such as calculateLocale(facesContext) andcalculateRenderKitId(facesContext).

ViewHandler viewHandler = facesContext.getApplication.getViewHandler();

viewRoot.setLocale(viewHandler.calculateLocale(context));

viewRoot.setRenderKitId(viewHandler.calculateRenderKitId(context));

viewRoot.setViewId(<<viewId>>);

After the above code is executed, UIViewRootmay be used directly to access the current viewId of the

request. Also, in ViewMetadata,a related Faceletis created and then based on this Facelet,UIViewRootis

populated with the components related to metadata.

ViewMetadata Facelet initialization: There are two types of Facelets - the normal View Facelets and the

View Metadata Facelets. TheView Metadata Facelets correspond to metadata tag in the XHTML.This part of

the Faceletdoes not create the full view Facelets,because there is no need to handle other kind of tags present

in the physical Facelet file (XHTML),other than the metadata.A physical Facelet file corresponds to an

XHTML file, which is basically an XML file. Therefore, to get hold of a Facelet object, the XML should be

first parsed. MyFaces internally uses a fast SAX compiler to achieve this parsing. The SAX compiler class is

javax.xml.parsers.SAXParser and its parse method takes org.xml.sax.helpers.DefaultHandler as one of the

arguments, which can handle events generated from the parser. MyFaces creates these custom handlers to

handle the events generated by the parser.One of the methods from org.xml.sax.helpers.DefaultHandler to

handle the transformation from an XML to Facelets, is startElement(String uri, String localName, String

qName, Attributes attributes).In this method,org.xml.sax.Attributes are converted to

javax.faces.view.facelets.TagAttribute. For this type of Facelet, anything other than f:metadata is not

considered.Using the parameters of the method startElement,javax.faces.view.facelets.Tag object is created

and passed further for processing.

TagDecorator:One of the steps of the execute method, that occurs at this point is the transformation of the

Tag object using javax.faces.view.facelets.TagDecorator into a new Tag object per the decoration logic(In

JSF 2.3, there is a default implementation of TagDecoratoralready available – refer to TagDecoratorin

JavaDoc).The code used for this paper does not needany custom tag decoration except processing using the

default TagDecoratorof JSF.

Once the XML parsing is completed, there may be various TagHandlerscomprising of Tag along with the

next TagHandler. To get the Facelet from these TagHandlers, typical JSF implementations create a top level

TagHandler(for e.g., EncodingHandlerin MyFaces) which becomes the starting TagHandler inside JSF

implementation of Facelet. Here is the chain of TagHandlers created for this Facelet.

 ISSN: 2249-0558 Impact Factor: 7.119

446 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

EncodingHandler

NamespaceHandler

ViewMeatadataHandler
(f:metadata)

CompositeFaceletHandler

ComponentHandler
 (f:viewAction)

ComponentHandler
 (f:viewParam)

ViewMetadata Facelet
(pagetest.xhtml) – Tag Handlers tree

Figure 5

Tag Handler Factories:During the creation of the Tag Handlers, Tag Handler factories play a key role in

setting up the handler objects pertaining to tag, component, converter, validator. These factories are specific

to JSF implementation, but their purpose is the same, i.e., to set up or provide a mapping from XML markup

on the XHTML page to its corresponding handler. For e.g.,metadatamarkup in XML page (which is

associated with the namespace http://xmlns.jcp.org/jsf/core) is mapped as a TagHandler in one of the

libraries (CoreLibrary), while viewAction and viewParam with the same namespace are mapped to

component (without any renderer and no specific handler). When a component has no specific component

handler associated with it, the JSF engine will associate ComponentHandler class as the default handler.

Like the core library, there are other types of standard libraries in each JSF implementation, such as

HtmlLibrary, JstlCoreLibrary etc. which help in creating the proper mapping between XML and the

namespace to its corresponding handlers. These handlers (if component handler) in turn, help in creating the

actual components.

D. Render Response Phase (LifeCycle Render Method)

In response to an Initial Request (as against a PostBackrequest), this phase basically fills up the UIViewRoot

with the components. However, before this occurs, the view Facelet is first created (like ViewMetadata

Facelet creation in the RESTORE_VIEW phase). As described in the previous section, there are two types of

Facelets - the normal View Facelets and the View Metadata Facelets. TheView Metadata Facelet is created

with the help of the method buildView in VDL.The concept around building View Facelets is like building

the View Metadata Faceletwith the exception that the entire XML markup is used to create tag handlers,

component handlers, etc (as against using just the metadata tag in the RESTORE_VIEW Phase). Once the

chain of handlers is created and set in the top level Facelet, various components get created when apply

method is executed on the Facelet.

In the next figure 6, EncodingHandler is the root of the handler, which starts the building process of the

component tree. The entire process starts once the apply method is executed on the Facelet(which has this

EncodingHandler, as its main root handler), which in turn executes recursively the next handler and so

on,until the whole chain is executed eventually creating the component tree.

package javax.faces.view.facelets;

public abstract class Facelet {

 public abstract void apply(FacesContext facesContext, UIComponent parent) throws IOException;

}

 ISSN: 2249-0558 Impact Factor: 7.119

447 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

The above method in the Facelet passes the UIViewRoot as the parent component. Once a

ComponentHandler is encountered, a component of that type is created and then the next handlersapply

method is executed.ComponentHandler extends from DelegatingMetaTagHandlerwith the following

functions, to provide the capability of calling the chained handlers in recursion till the whole tree is built.

public void apply(FaceletContext ctx, UIComponent parent) throws IOException{

//this method internally calls the //applyNextHandler method for chaining the next handler

getTagHandlerDelegate().apply(ctx, parent);

 }

public void applyNextHandler (FaceletContext ctx, UIComponent c) throws IOException{

 nextHandler.apply (ctx, c);

}

The diagram below provides the actual tag handlers tree present in the view Facelet.

`

EncodingHandler

NamespaceHandler

CompositionHandler
 (ui:composition)

CompositeFaceletHandler DefineHandler
 (ui:define)

UIInstructionHandler
(Test Title)

DefineHandler
 (ui:define)

ViewMetadataHandler
(f:metadata)

CompositeFaceletHandler

ComponentHandler
 (f:viewAction)

ComponentHandler
 (f:viewParam)

DefineHandler
 (ui:define)

HtmlComponentHandler
(h:form)

CompositeFaceletHandler

ComponentHandler
 (p:panelGrid)

CompositeFaceletHandler FacetHandler
 (f:facet)

UIInstructionHandler
 (Header)

ComponentHandler
 (p:outputLabel)

ComponentHandler
 (p:inputText)

FacetHandler
 (f:facet)

ComponentHandler
(p:commandButton)

ValidateBean
(o:validateBean)

View Facelet (pagetest.xhtml) – Tag Handlers tree

Figure 6

Since the current view has the template specified, CompositionHandler includes the actual template Facelet,

which can also add new handlers – this execution is explained next.

The apply method of CompositionHandlerexecutes the following method to include the template Facelet.

This method is present in the FaceletContext.

public abstract void includeFacelet(UIComponent parent, String relativePath);

Of course, in the above method, the UIComponent object passed will be UIViewRoot. As explained earlier in

this document, the template Facelet is built using the same strategy of parsing it with the SAX compiler and

building the tree.

 ISSN: 2249-0558 Impact Factor: 7.119

448 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

JSF Component Tree - UIViewRoot:The diagram below depicts the component tree built in UIViewRoot,

with the help of the handlers described previously:

`

UIViewRoot

UIInstructions
(<?xml version="1.0" encoding="ISO-8859-1"?>)

UIInstructions
(<html lang="en" xmlns="http://www.w3.org/1999/xhtml">)

HtmlHead

HtmlBody

UIInstructions
 (</html>)

 UIInstructions
(<title>)

 UIInstructions
(Test Title)

UIInstructions
 (</title>)

 HtmlPanelGroup

HtmlForm

PanelGrid

OutputLabel

InputText

Facet Map

UIInstructions
 (parent facet: header)

 CommandButton
(parent facet: footer)

Facet Map

 UIPanel
(parent facet: javax_faces_metadata)

UIViewAction

 UIViewParameter

ComponentResourceContainer
(UIOutput - Script and Stylesheet related components) (parent facet: header)

UIViewRoot – Component Tree

Figure 7

JSF Component Class Mapping:-The following is a mapping of java Classes to fully qualified Class

Names (the mapping only provides classes and class names that are part of JSF API, PrimeFaces and not

those that are specific to a JSF Implementation):
 UIViewRoot - javax.faces.component.UIViewRoot

 HtmlHead - javax.faces.component.html.HtmlHead

 HtmlBody - javax.faces.component.html.HtmlBody

 HtmlPanelGroup - javax.faces.component.html.HtmlPanelGroup

 HtmlForm - javax.faces.component.html.HtmlForm

 PanelGrid – org.primefaces.component.panelgrid.PanelGrid

 OuputLabel - org.primefaces.component.outputlabel.OutputLabel

 InputText - org.primefaces.component.inputtext.InputText

 ISSN: 2249-0558 Impact Factor: 7.119

449 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 CommandButton - org.primefaces.component.commandbutton.CommandButton

 UIPanel – javax.faces.component.UIPanel

 UIViewAction - javax.faces.component.UIViewAction

 UIViewParameter - javax.faces.component.UIViewParameter

 UIOutput - javax.faces.component.UIOutput

 ComponentHandler – javax.faces.view.facelets.ComponentHandler

 ResourceDependency – javax.faces.application.ResourceDependency

IV. CONCLUSION

This paper presents a thorough analysis of internals of JSF engine and covered topics such as FacesServlet

initialization and how FacesContext is initialized, LifeCycle, ViewMetadata, VDL, TagDecoratorsto help

readers understand how a JSF 2.3runtime eginetransforms a physical XHTML file to multiple Facelet java

objects and and then to JSF component tree as UIViewRoot. This paper provides sample code to make it easy

for the readers to easily follow this complex transformation of XHTMl file. The thorough understanding of

the internals of JSF engine will help software architects and designers to design and maintain complex

enterprise systems based on JSF 2.3.

REFERENCES

[1] JavaServer Faces 2.3 API, website - https://javaserverfaces.github.io/docs/2.3/javadocs/index.html

[2] JavaServer Faces 2.3 Tutorial, website - https://javaee.github.io/tutorial/jsf-intro.html#BNAPH

[3] ZEEF JSF, website - https://jsf.zeef.com/arjan.tijms

[4] ZEEF JEE 8, website - https://javaee8.zeef.com/arjan.tijms

[5] PrimeFaces 7API, website - https://www.primefaces.org/docs/api/7.0/

[6] OmniFaces3.3 API, website - http://omnifaces.org/docs/javadoc/3.3/

[7] MyFaces 2.3, website - https://myfaces.apache.org/core23/index.html/

https://javaserverfaces.github.io/docs/2.3/javadocs/index.html
https://javaee.github.io/tutorial/jsf-intro.html#BNAPH
https://jsf.zeef.com/arjan.tijms
https://javaee8.zeef.com/arjan.tijms
https://www.primefaces.org/docs/api/7.0/
http://omnifaces.org/docs/javadoc/3.3/
https://myfaces.apache.org/core23/index.html
http://myfaces.apache.org/core22/
http://myfaces.apache.org/core22/

